Strength Calculation of (Cam Action) Indexing Plungers

for Shear Load / Bending Load of the Plunger Pin

D

Dimensions in: millimeters - inches

Formulas for calculation

Pin cross-section	Limit tension	Shear force
$S = \frac{d^2 \times \pi}{4}$	$T_a = 0.8 \times R_m$	$F = S x T_a = \frac{d^2 x \pi}{4} x 0.8 x R_m$

Material

Material characteristics

The tensile strength ($R_{\rm m})$ and the yield strength ($R_{\rm e})$ shown in the table opposite have been determined by tension tests on tension specimen in accordance with DIN 50125-B6-30.

These tests constitute the basis for the load bearing capacities given below.

matorial		• •e	••m
Description	Material no.	in N/mm²	in N/mm²
C45Pb	1.0504	560	640
X 10 CrNiS 18 9	AISI 303	580	740

Calculation example, load values

Example:

Indexing plungers with a 6 mm pin diameter made of stainless steel with a yield strength of $R_e = 580$ N/mm², calculation against permanent deformation, the maximum permissible shear stress is wanted.

 $F_{per} = \frac{(6 \text{ mm})^2 \text{ x } \pi}{4} \text{ x } 0.8 \text{ x } 580 \text{ N/mm}^2 = 13120 \text{ N} (2949 \text{ lbf})$

d Pin diameter	Max. force ${f F}$ differentiated acc. material and strength value				d	Max. force F differentiated acc. material and strength value			
	C45Pb (1.0504)		X 10 CrNiS 18 9 (AISI 303)		Pin diameter	C45Pb (1.0504)		X 10 CrNiS 18 9 (AISI 303)	
	at R _e	at R _m	at R _e	at R _m		at R _e	at R _m	at R _e	at R _m
3	3160 N	3610 N	3270 N	4180 N	8	22510 N	25730 N	23320 N	29750 N
0.12	710 lbf	812 lbf	735 lbf	940 lbf	0.31	5060 lbf	5784 lbf	5243 lbf	6688 lbf
4	5620 N	6430 N	5830 N	7430 N	10	35180 N	40210 N	36440 N	46490 N
0.16	1263 lbf	1446 lbf	1311 lbf	1670 lbf	<i>0.39</i>	7909 lbf	9040 lbf	8192 lbf	10451 lbf
5	8790 N	10050 N	9110 N	11620 N	12	50660 N	57900 N	52470 N	66950 N
0.20	1976 lbf	2259 lbf	2048 lbf	2612 lbf	0.47	11389 lbf	13016 lbf	11796 lbf	15051 lbf
6	12660 N	14470 N	13120 N	16730 N	16	90070 N	102940 N	93290 N	119020 N
0.24	2846 lbf	3253 lbf	2949 lbf	3761 lbf	<i>0.63</i>	20249 lbf	23142 lbf	20972 lbf	26757 lbf

Safety information

The design also requires an adequate safety factor to be taken into account. Usual safety factors under static load 1.2 to 1.5; pulsating 1.8 to 2.4 and alternating 3 to 4.

Disclaimer:

Our information and recommendations are given with non-binding effect and ruling out any liability, unless we have expressly committed ourselves in writing to provide information and recommendations. All products are standard parts for versatile uses and as such are subjected to extensive standard tests. You should carry out your own test series to verify whether a certain product is suitable for your specific applications. We cannot be held responsible for this.

Strength Calculation of (Cam Action) Indexing Plungers continued

Bending load

As soon as a gap "I" remains between the guide and the indexing hole opposite, the load can be reduced to a bending rod clamped in at one side.

With this approach, the calculation is made against the bending of the indexing plunger as a case of failure.

Material no.

Re

in N/mm² (\approx permissible bending tension σ_{b})

Dimensions in: millimeters - inches

Formulas for calculation

Resistance torque	Bending stress	Bending strength
$W = \frac{\pi x d^3}{32}$	$M_b = \sigma_b \times W$	$F = \frac{M_{b}}{I} = \frac{\sigma_{b} x \pi x d^3}{I x 32}$

Material characteristics

The tensile strength ($R_{\rm m})$ and the yield strength ($R_{\rm e})$ shown in the table opposite have been determined by tension tests on tension specimen in accordance with DIN 50125-B6-30.

These tests constitute the basis for the load bearing capacities given below.

C45Pb 1.0504 560 X 10 CrNiS 18 9 AISI 303 580

Material

Description

Calculation examples, load values

Example:

Indexing plungers with a 5 mm pin diameter made of steel with a yield strength of $R_e = 560 \text{ N/mm}^2$, calculation against permanent bending, the maximum permissible bending force is wanted:

 $F_{per} = \frac{560 \text{ N/mm}^2 \text{ x } \pi \text{ x } (5\text{mm})^3}{2\text{mm x } 32} = 3430 \text{ N} (771 \text{ lbf})$

d Pin diameter	Max. bending force F differentiated acc. material and gap "I" C45Pb (1.0504) X 10 CrNiS 18 9 (AISI 303)				d Pin diameter	Max. bending force F differentiated acc. material and gap "I" C45Pb (1.0504) X 10 CrNiS 18 9 (AISI 303)			
	I = 2 mm	I = 3 mm	I = 2 mm	I = 3 mm		I = 2 mm	I = 3 mm	I = 2 mm	I = 3 mm
3	740 N	490 N	760 N	510 N	8	14070 N	9380 N	14570 N	9710 N
0.12	166 lbf	110 lbf	171 lbf	115 lbf	0.31	3163 lbf	2109 lbf	3275 lbf	2183 lbf
4	1750 N	1170 N	1820 N	1210 N	10	27480 N	18320 N	28470 N	18980 N
0.16	393 lbf	263 lbf	409 lbf	272 lbf	<i>0.39</i>	6178 lbf	4118 lbf	6400 lbf	4267 lbf
5	3430 N	2290 N	3550 N	2370 N	12	47490 N	31660 N	49190 N	32790 N
0.20	771 lbf	515 lbf	798 lbf	533 lbf	0.47	10676 lbf	7117 lbf	11058 lbf	7371 lbf
6	5930 N	3950 N	6140 N	4100 N	16	112590 N	75063 N	116610 N	77740 N
0.24	1333 lbf	888 lbf	1380 lbf	922 Ibf	<i>0.63</i>	25311 lbf	16875 lbf	26215 lbf	17477 lbf

Safety information

The design also requires an adequate safety factor to be taken into account. Usual safety factors under static load 1.2 to 1.5; pulsating 1.8 to 2.4 and alternating 3 to 4.

Disclaimer:

Our information and recommendations are given with non-binding effect and ruling out any liability, unless we have expressly committed ourselves in writing to provide information and recommendations. All products are standard parts for versatile uses and as such are subjected to extensive standard tests. You should carry out your own test series to verify whether a certain product is suitable for your specific applications. We cannot be held responsible for this.